Accepted Papers

PROCEEDINGS

Proceedings of AEQUITAS 2023 are available on CEUR.ws

Go To The Proceedings

Accepted Papers

  • Causal Fair Machine Learning via Rank-Preserving Interventional Distributions - Ludwig Bothmann, Susanne Dandl, Michael Schomaker

  • Visualizing Bias in Activations of Deep Neural Networks as Topographic Maps - Valerie Krug, Christopher Olson, Sebastian Stober

  • Recommendations for Bias Mitigation Methods: Applicability and Legality - Madeleine Waller, Odinaldo Rodrigues, Oana Cocarascu

  • Reasoning With Bias - Chiara Manganini, Giuseppe Primiero

  • FAiRDAS: Fairness-Aware Ranking as Dynamic Abstract System - Eleonora Misino, Roberta Calegari, Michele Lombardi, Michela Milano

  • EXTRACT: Explainable Transparent Control of Bias in Embeddings - Zhijin Guo, Zhaozhen Xu, Martha Lewis, Nello Cristianini

  • Fairness in job recommendations: estimating, explaining, and reducing gender gaps - Guillaume Bied, Christophe Gaillac, Morgane Hoffmann, Philippe Caillou, Bruno Crépon, Solal Nathan, Michèle Sebag

  • Gender Bias in Multimodal Models: A Transnational Feminist Approach Considering Geographical Region and Culture - Abhishek Mandal, Suzanne Little, Susan Leavy

  • A geometric framework for fairness - Alessandro Maggio, Luca Giuliani, Roberta Calegari, Michele Lombardi, Michela Milano

  • Symbolic AI (LFIT) for XAI to handle biases - Javier Tello, Marina de la Cruz, Tony Ribeiro, Julian Fierrez, Aythami Morales, Ruben Tolosana, César Luis Alonso, Alfonso Ortega

  • Bias Mitigation for Large Language Models using Adversarial Learning - Jasmina S. Ernst, Sascha Marton, Jannik Brinkmann, Eduardo Vellasques, Damien Foucard, Martin Kraemer, Marian Lambert

  • Impact based fairness framework for socio-technical decision making - Mattias Brännström, Lili Jiang, Andrea Aler Tubella, Virginia Dignum